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Abstract. We introduce an elastic registration approach which is based
on a physical deformation model and uses Gaussian elastic body splines
(GEBS). We formulate an extended energy functional related to the
Navier equation under Gaussian forces which also includes landmark lo-
calization uncertainties. These uncertainties are characterized by weight
matrices representing anisotropic errors. Since the approach is based on
a physical deformation model, cross-effects in elastic deformations can
be taken into account. Moreover, we have a free parameter to control the
locality of the transformation for improved registration of local geometric
image differences. We demonstrate the applicability of our scheme based
on 3D CT images from the Truth Cube experiment, 2D MR images of the
brain, as well as 2D gel electrophoresis images. It turns out that the new
scheme achieves more accurate results compared to previous approaches.

1 Introduction

The registration of 2D and 3D biomedical images is an important task, however,
it is difficult and challenging. One reason is that in many applications it is
still not quite clear which type of image information is optimal for matching.
Another reason is that the spectrum of possible geometric differences is relatively
large.

Generally, nonrigid schemes are required for image registration (for a recent
survey see [1]). A special class of nonrigid transformations are elastic transforma-
tions, which allow to cope with local shape differences, and which are typically
based on an energy functional or the related partial differential equation (PDE).
To compute an elastic transformation, often spline-based approaches are used,
which can be subdivided into schemes based on a uniform grid of control points,
where typically B-splines are used, and schemes based on a nonuniform grid of
control points (e.g., [2,3,4,5,6,7,8,9,10]). The latter type of spline-based schemes
generally requires a smaller number of control points (landmarks). Examples
of such schemes are based on thin-plate splines (TPS, e.g., [4,6,8]), elastic body
splines (EBS, e.g., [2]), and Gaussian EBS (GEBS, e.g., [5,9,10]). TPS are based
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Fig. 1. Deformations obtained for the displacement of a single landmark using TPS
(left) as well as GEBS: ν = 0 (middle) and ν = 0.49 (right)

on the bending energy of a thin plate, which represents a relatively coarse de-
formation model. In comparison, EBS and GEBS are derived from the Navier
equation, which describes the deformation of homogeneous elastic tissues (bod-
ies). In spline-based registration approaches, generally an interpolation scheme
is used that forces corresponding landmarks to exactly match each other. The
underlying assumption is that the landmark positions are known exactly. In real
applications, however, landmark localization is always prone to error. There-
fore, to take into account landmark errors, approximation schemes have been
proposed, for example, for TPS (e.g., [4]). However, approximation schemes for
EBS and GEBS approaches have not yet been introduced.

We have developed a physics-based approach for elastic image registration
based on GEBS. To incorporate localization uncertainties of landmarks we intro-
duce an extended energy functional related to the Navier equation. By inclusion
of weight matrices we can cope with anisotropic uncertainties, i.e. uncertainties
that are different in different directions. Our scheme results from an analytic
solution of the corresponding extended Navier equation using Gaussian forces.
Note that the derivation of our scheme significantly differs from the derivation
of approximating TPS. The reason is that the underlying PDEs of GEBS and
TPS as well as the assumed image forces (i.e. Gaussian forces and Dirac forces,
respectively) are different. Central to our scheme is that it includes a material
parameter (Poisson ratio ν), which defines the ratio between transverse con-
traction and longitudinal dilation of an elastic material. Therefore, cross-effects
can be taken into account which is not the case for TPS. Fig. 1 illustrates this
effect for the case of a single landmark which is displaced horizontally (partic-
ularly note the vertical deformations in Fig. 1, right). Moreover, we have a free
parameter to control the locality of the transformation.

2 Gaussian Elastic Body Splines (GEBS)

2.1 Interpolating GEBS

In this section, we briefly describe the interpolating GEBS approach [5]. This
approach is based on the Navier equation of linear elasticity

μ̃Δu + (˜λ + μ̃)∇ (divu) + f = 0 (1)
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with the displacement vector field u, body forces f , as well as Lamé constants
μ̃, ˜λ > 0 describing material properties. Given Gaussian forces f(x) = c f(r) =
c (

√
2πσf )−3 exp(− r2

2σ2
f
) with x = (x, y, z)T , r =

√

x2 + y2 + z2, and the stan-

dard deviation σf , an analytic solution of (1) can be derived [5]. The resulting
matrix-valued basis function G (a 3 × 3 matrix) reads (up to a constant factor)

G(x) =

(

αr2 + σ2
f

r3 erf(r̂) − β
e−r̂2

r2

)

I +

(

r2 − 3σ2
f

r5 erf(r̂) + 3β
e−r̂2

r4

)

xxT (2)

where r̂ = r/(
√

2σf ), α = 3 − 4ν, β = σf

√

2/π, and the error function erf(x) =
2 π−1/2

∫ x

0 e−ξ2
dξ. I denotes the 3 × 3 identity matrix and ν is the Poisson ratio

ν = ˜λ/(2˜λ + 2μ̃), 0 ≤ ν < 0.5. In contrast, in the original EBS approach [2]
polynomial or rational forces are used. Using the interpolation condition qi =
u(pi), the scheme for spline-based elastic image registration is given by u(x) =
x +

∑n
i=1 G(x − pi) ci, where pi and qi (i = 1, . . . , n) denote the positions of

the n landmarks of the source and target image, respectively. The coefficients ci

represent the strength and direction of the Gaussian forces.

2.2 Approximating GEBS

With the interpolation approach described above the landmarks are matched
exactly. This implicitly assumes that the landmark positions are known exactly.
To take into account landmark localization errors we use the approximation
condition qi ≈ u(pi) and include 3 × 3 covariance matrices Σi defining the
anisotropic localization uncertainties of the landmarks i = 1, . . . , n. To derive
approximating GEBS, we introduce an energy-minimizing functional consisting
of two terms. The first term JElastic represents the elastic energy according to
the Navier equation (1) without the force f and acts as a smoothness term. The
corresponding Lagrange function is given by

LElastic = μ̃
(

u2
x + v2

y + w2
z

)

+ μ̃
(

(uy + vx)2 + (uz + wx)2 + (vz + wy)2
)

/2

+˜λ
(

u2
x + v2

y + w2
z + 2uxvy + 2uxwz + 2vywz

)

/2, (3)

where u = (u, v, w)T = u(x) and the subscripts x, y, and z denote first order
partial derivatives. The second term JForce represents Gaussian forces speci-
fied by corresponding landmarks pi and qi, and, in addition, incorporates the
localization uncertainties Σi of the landmarks. Here, we propose a quadratic
approximation JForce, which is given by the following Lagrange function

LForce =
1

λn

n
∑

i=1

f(x − pi) (qi − u(x))T
Σ−1

i (qi − u(x)) (4)

where λ > 0 denotes the regularization parameter. Note that LForce includes
Gaussian forces f(x − pi) in contrast to Dirac forces in the case of TPS. The
combined functional Jλ then reads
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Jλ = JElastic + JForce =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(LElastic(x,u) + LForce(x,u)) dx. (5)

The corresponding PDE can be derived as

μ̃Δu + (˜λ + μ̃)∇ (divu) + ∇u LForce = 0, (6)

and represents an extension of the Navier equation (1). The solution to (6) can
be determined in analytic form and it turns out that it is the same as in the
case of interpolation, i.e. it consists of the same matrix-valued basis function G.
However, the resulting linear system of equations to compute the coefficients ci

differs. More precisely, the structure of the linear system of equations is the same
for interpolating and approximating GEBS, except that approximating GEBS
include additional sums of weighted forces

∑n
i=1 f(pj − pi)Σ−1

i .

2.3 Means to Improve Stability and Efficiency

To compute the matrix-valued basis function G in (2), we have to consider two
different aspects. First, for small values of r < 0.001 the computed values for G
are numerically not stable, which is caused by fractions that involve very small
numerators and denominators. However, this problem can easily be solved by
employing the limit of G for r → 0, which is given by

lim
r→0

G(x) =
1

16πσμ̃

1
1 − ν

√

2
π

(

10
3

− 4ν

)

I. (7)

Second, G involves the computation of the Gaussian error function, which is a
costly operation in comparison to, e.g., a multiplication. To reduce the compu-
tation time, we exploit the fact that for r � σ the basis function G reduces to

G(x) ≈ 1
16πμ̃

1
1 − ν

(

3 − 4ν

r
I +

xxT

r3

)

. (8)

In our implementation, we use this approximation for r > 18σ where the error
is below 1%, while the computation time is reduced by a factor of about 2.

3 Experimental Results

3.1 3D CT Truth Cube Images

To validate our scheme we have used 3D CT images from the Truth Cube ex-
periment [11]. The Truth Cube is a silicone rubber cube, which comprises 343
regularly distributed small Teflon spheres (see Fig. 2, left). Using a compression
plate, a force is applied to the top face yielding a compressed cube. Images have
been acquired for the uncompressed cube as well as for three different compres-
sions (nominal strains of 5%, 12.5%, and 18.25%). In each of the four 3D CT
images, the positions of all 343 spheres have been determined. We have registered
the 3D image of the uncompressed cube to each of the three compressed cube
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Fig. 2. Truth Cube with 343 small spheres (left, from [11]) and sketch of Truth Cube
with nine landmarks at the bottom face and nine landmarks at the top face (right)

Table 1. Mean geometric error egeom and mean intensity error eint for the registration
of 3D Truth Cube images as well as the improvement w.r.t. the unregistered case

5% strain 12.5% strain 18.25% strain
egeom eint egeom eint egeom eint

Unregistered absolute 2.6 mm 16.9 gr 6.1 mm 30.7 gr 9.2 mm 41.2 gr
Interpol. TPS absolute 0.6 mm 9.9 gr 1.6 mm 22.0 gr 2.5 mm 41.6 gr

improvement 75.5 % 41.7 % 74.5 % 28.3 % 72.9 % -1.0 %
Approx. TPS absolute 0.6 mm 9.9 gr 1.6 mm 22.0 gr 2.5 mm 41.6 gr

improvement 75.5 % 41.7 % 74.5 % 28.3 % 72.9 % -1.0 %
Interpol. GEBS absolute 0.8 mm 7.5 gr 1.7 mm 12.3 gr 1.9 mm 33.2 gr

improvement 68.2 % 55.6 % 72.0 % 59.9 % 78.8 % 19.6 %
Approx. GEBS absolute 0.5 mm 6.8 gr 1.1 mm 13.8 gr 1.3 mm 28.3 gr

improvement 81.2 % 60.0 % 82.7 % 55.2 % 85.9 % 31.3 %

images. We placed nine landmarks at the (fixed) bottom face of the cube as well
as nine landmarks at the top face (see Fig. 2, right). To quantitatively determine
the registration accuracy, we computed the mean geometric error egeom between
the 343 spheres of the (registered) source image (uncompressed cube) and the
corresponding 343 spheres of the target image (compressed cube). In addition,
we computed the mean intensity error eint. For the anisotropic errors we chose
a value of σy = 1vox in the direction of the landmark displacements as well as
σxz = 8vox (top) and σxz = 3vox (bottom face) for the orthogonal directions.

Table 1 summarizes the registration results. Applying the new approach, the
mean geometric error egeom improved by 81.2%, 82.7%, and 85.9% w.r.t. the
unregistered images for strains of 5%, 12.5%, and 18.25%, respectively. In com-
parison, for interpolating GEBS the results are worse with improvements of
68.2%, 72.0%, and 78.8%, respectively. For interpolating TPS the results are
also worse, in particular, for a strain of 18.25%. Note that for approximating
TPS the results did not improve in comparison to interpolating TPS, probably
because TPS do not cope with cross-effects in deformations (see also below). The
results based on the mean intensity error eint are comparable with the results for
egeom. As an example, Fig. 3 shows 2D sections of the registered source image
overlayed with the computed edges of the target image (18.25% strain). It can
clearly be seen that the compression of the cube leads to a bending at the sides
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Fig. 3. Truth Cube experiment: Source image overlayed with computed edges of the
target image (18.25% strain) without registration as well as with registration using
interpolating TPS, interpolating GEBS, and approximating GEBS (from left to right)

(see the computed edges). Comparing the registration results of TPS and GEBS,
it can be seen that the registered image using TPS (middle left) does not reveal
a bending whereas using GEBS (middle right and right) the bending is modeled
much better. The reason is that with GEBS cross-effects are taken into account,
i.e. a contraction in one direction leads to a dilation in orthogonal directions.

3.2 2D MR Images

We have also applied our approach to register pre- and postsurgical MR images
of the human brain. Fig. 4 (left) shows 2D MR images of a patient before (source
image, top) and after (target image, bottom) the resection of a tumor. 27 land-
marks have been used along the contours of the tumor and the head (indicated
by crosses). To simulate landmark localization in clinical routine, which is gen-
erally prone to error, we have misplaced five landmarks at the outer skull at the
left side. For these misplaced landmarks, we defined the localization uncertain-
ties in accordance with their displacements, whereas for the other landmarks
we chose small isotropic uncertainties. Prior to elastic registration the images
have initially been aligned by an affine transformation. Note that after affine
transformation the ventricular system is well aligned, thus the resection of the
tumor has only a minor effect on the position and size of the ventricular system.
Fig. 4 shows the registered source image overlayed with the computed edges
of the target image for interpolating GEBS (bottom middle) and approximating
GEBS (bottom right). It can be seen that in both cases the vicinity of the tumor
and resection area are well registered. However, it turns out that the misplaced
landmarks significantly affect the registration result in the case of interpolating
GEBS, see the unrealistic oscillations at the outer skull (Fig. 4, bottom middle,
indicated by the arrows). In contrast, using approximating GEBS the influence
of the misplaced landmarks is relative low, while the tumor and resection area
are still well registered. For a comparison, we have also applied interpolating and
approximating TPS (Fig. 4 top middle and right, respectively). In both cases the
vicinity of the tumor and the resection area are well registered. However, there
are significant errors at the ventricular system. In contrast, using GEBS only
deforms the image in the vicinity of the landmarks and does not significantly
affect other parts of the image.
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Fig. 4. Registration of 2D MR brain images: Pre- (top left) and postsurgical image
(bottom left) as well as registered source images overlayed with computed edges of the
target image using interpolating TPS (top middle), approximating TPS (top right),
interpolating GEBS (bottom middle), and approximating GEBS (bottom right)

3.3 2D Gel Electrophoresis Images

We have also applied our scheme to 2D gel electrophoresis images. As an example,
Fig. 5 shows a section of a source image overlayed with computed edges of the
target image (top left) and the target image overlayed with marked landmarks
and computed error ellipses (bottom left). Using interpolating GEBS (bottom
middle), it turns out that most corresponding spots except for the largest spot
match quite well. The mean intensity error eint improves by 17.1% w.r.t. the
unregistered case. In contrast, using approximating GEBS (bottom right) yields
a significantly more accurate result since also the largest spot is well matched
(eint improves by 40.1%). Interpolating and approximating TPS (top middle and
top right) yield worse results with improvements of 0.8% and 35.1%, respectively.

4 Conclusion

We have presented a new elastic registration approach, which is based on a
physical deformation model, uses Gaussian elastic body splines (GEBS), and
incorporates localization uncertainties of the landmarks. Since the approach is
based on a physical deformation model, cross-effects in elastic deformations can
be taken into account. We have demonstrated the applicability of our scheme
based on different types of images. It turned out that the new approach achieves
more accurate registration results in comparison to previously proposed inter-
polating GEBS as well as TPS.
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Fig. 5. Registration of 2D electrophoresis images: Source image overlayed with com-
puted edges of the target image without registration (top left) as well as with registra-
tion using interpolating TPS (top middle), approximating TPS (top right), interpolat-
ing GEBS (bottom middle), and approximating GEBS (bottom right). Also, the target
image overlayed with marked landmarks and error ellipses is shown (bottom left).
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