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Abstract. We introduce a new approach for the localization of 3D
anatomical point landmarks based on 3D parametric intensity models
which are directly fit to an image. We propose different analytic inten-
sity models based on the Gaussian error function in conjunction with 3D
rigid transformations as well as deformations to efficiently model tip-like,
saddle-like, and sphere-like structures. The approach has been success-
fully applied to accurately localize anatomical landmarks in 3D MR and
3D CT image data. We have also compared the experimental results with
the results of a previously proposed 3D differential operator. It turns out
that the new approach significantly improves the localization accuracy.

1 Introduction

The localization of 3D anatomical point landmarks is an important task in med-
ical image analysis. Landmarks are useful image features in a variety of applica-
tions, for example, for the registration of 3D brain images of different modalities
or the registration of images with digital atlases. The current standard proce-
dure, however, is to localize 3D anatomical point landmarks manually which is
difficult, time consuming, and error-prone. To improve the current situation it
is therefore important to develop automated methods.

In previous work on the localization of 3D anatomical point landmarks, 3D
differential operators have been proposed (e.g., Thirion [12], Rohr [10]). Recently,
an evaluation study of nine different 3D differential operators has been performed
by Hartkens et al. [7]. 2D differential approaches for extracting point landmarks
in 2D medical images have been described in Briquer et al. [3] and Hartkens et al.
[6]. While being computationally efficient, differential operators incorporate only
small local neighbourhoods of an image and are therefore relatively sensitive to
noise, which leads to false detections and also affects the localization accuracy.
Recently, an approach based on deformable models was introduced (Frantz et
al. [4], Alker et al. [1]). With this approach tip-like anatomical structures are
modeled by surface models, which are fit to the image data using an edge-based
fitting measure. However, the approach requires the detection of 3D image edges
as well as the formulation of a relatively complicated fitting measure.
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Fig. 1. Ventricular horns of the human brain (from [11]) and the human skull (from
[2]). Examples of 3D point landmarks are indicated by black dots.

We have developed a new approach for the localization of 3D anatomical
point landmarks. In contrast to previous approaches the central idea is to use
3D parametric intensity models of anatomical structures. In comparison to differ-
ential approaches, larger image regions and thus semi-global image information
is taken into account. In comparison to approaches based on surface models, we
directly exploit the intensity information of anatomical structures. Therefore,
more a priori knowledge and much more image information is taken into ac-
count in our approach to improve the robustness against noise and to increase
the localization accuracy. Also, a much simpler fitting measure can be used.

2 Parametric Intensity Models for Anatomical Structures

Our approach uses 3D parametric intensity models which are fit directly to the
intensities of the image data. These models describe the image intensities of
anatomical structures in a semi-global region as a function of a certain number
of parameters. The main characteristic in comparison to general deformable
models is that they exhibit a prominent point which defines the position of
the landmark. By fitting a parametric intensity model to the image intensities
we obtain a subvozel estimate of the position as well as estimates of the other
parameters, e.g., the image contrast. As important classes of 3D anatomical point
landmarks we here consider tip-like, saddle-like, and sphere-like structures.

3D Intensity Model of Tip-Like Structures Tip-like structures can be
found, for example, within the human head at the ventricular system (e.g., the
tips of the frontal, occipital, or temporal horns, see Fig. 1) and at the skull (e.g.,
the tip of the external occipital protuberance). The shape of these anatomical
structures is ellipsoidal. Therefore, to model them we use a (half-)ellipsoid de-
fined by three semi-axes (r;,ry,r.) and the intensity levels ag (outside) and ay
(inside). We also introduce Gaussian smoothing specified by a parameter o to
incorporate image blurring effects. The exact model of a Gaussian smoothed
ellipsoid cannot be expressed in analytic form and thus is computationally ex-
pensive. To efficiently represent the resulting 3D intensity structure we developed
an analytic model as an approximation. This model is based on the Gaussian
error function @ (z) = [*_ (27) 7Y% e7€°/2 d¢ and can be written as
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where x = (z,y, z). We define the tip of the ellipsoid w.r.t. the semi-axis r, as the
position of the landmark, which also is the center of the local coordinate system.
In addition, we include a 3D rigid transform R with rotation parameters («, 3,7)
and translation parameters (2o, Yo, 20)- Moreover, we extend our model to a more
general class of tip-like structures by applying a tapering deformation 7 with
the parameters p, and py, and a bending deformation B with the parameters ¢
(strength) and v (direction), which are defined by
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This results in the parametric intensity model with a total of 16 parameters:
gum (x,p) = gru. (T (B(R (x)))) 3)
PEu. = (Tw7Ty7r27 ag, a1,0, Pz, Py, 67 v,a, ﬂ777 Zo, Yo, zO) (4)

3D Intensity Model of Saddle-Like Structures Saddle-like structures can
be found, for example, within the human head at the zygomatic bone (see Fig.
1). These structures can be modelled by a bended ellipsoid where the bending is
symmetrical w.r.t. the center of the ellipsoid. Therefore, we modify (1) such that
the center of the local coordinate system is localized at the tip of the ellipsoid
w.r.t the semi-axis r,. By restricting the direction of the bending deformation
B towards the z-axis, i.e. setting v = 0 in (2), we achieve a saddle-like struc-
ture where the curvature of the bending is maximal at the center of the local
coordinate system. This defines the position of the landmark. Besides the bend-
ing deformation we also apply a 3D rigid transform R. Here, we do not use a
tapering deformation. Applying the transformations, we obtain the parametric
intensity model with a total of 13 parameters:
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3D Intensity Model of Sphere-Like Structures Sphere-like structures are,
for example, human eyes. These structures can be modelled by a sphere with
radius R. Fortunately, the exact model of a Gaussian smoothed sphere can be
expressed in analytic form (see [8]) and is given by

gsphere (X) =85 (R—1) =S5 (-R—71)—0’r ' (G, (R—71) — Gy (R+7)) (6)
where r = /22 + y? + 22, &, (z) = & (z/0), and G, (z) = ( 27ra)_1 e 27 . We
define the center of the sphere as the position of the landmark. In addition, we

include the intensity levels ag and a; as well as a 3D translation. This results in
the parametric intensity model with a total of 7 parameters:

PSphere = (R; Gg, a1, 0, 1‘0,110,20) (7)



Table 1. Size and resolution of the medical 3D images used in the experiments.

[Image [Slices [Size (Voxels) [Resolution (mm?®) |
Woho (MR)|[sagittal{256 x 256 x 256{1.0 x 1.0 x 1.0
C06 (MR) |laxial [256 x 256 x 120|0.859 x 0.859 x 1.2
C06 (CT) |laxial [320 x 320 x 87]0.625 x 0.625 x 1.0

3 Model Fitting Approach

Estimates of the model parameters in (4), (5), and (7) are found by a least-
squares fit of the model to the image intensities g (x) within semi-global regions-
of-interest (ROIs), thus minimizing the objective function
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Note, the fitting measure does not include any derivatives. This is in contrast
to previous fitting measures for surface models which incorporate the image
gradient as well as 1st order derivatives of the model (e.g., [4]).

For the minimization we apply the method of Levenberg-Marquardt, incor-
porating 1st order partial derivatives of the intensity model w.r.t. the model
parameters. In [9] such type of approach has been used for localizing 2D corner
and edge features. The partial derivatives can be derived analytically using the
generalized chain rule. Note, we do not need to compute the image gradient as
is the case with surface models. We need 1st order derivatives of the intensity
model only for the minimization process, whereas the surface model approach
requires 2nd order derivatives for the minimization.

4 Experimental Results: 3D Synthetic Data

We applied our approach to synthetic 3D image data generated by the three
intensity models itself with added Gaussian noise. For the ellipsoidal model,
we carried out about 3000 experiments with different parameter settings and
achieved a very high localization accuracy with a maximum error in the esti-
mated position of less than 0.15 voxels (except in one case we got 0.35 voxels).
We also found that the approach is robust w.r.t. the choice of initial parameters.
Additionally, for about 2000 experiments with similar settings but very intense
Gaussian noise down to a signal-to-noise ratio of ca. 1, the maximum localization
error turned out to be less than 0.53 voxels. For the saddle model, we carried
out about 5000 similar experiments. The resulting localization errors turned out
to be about twice as large as for the ellipsoidal model. For the spherical model,
the results of 5000 similar experiments are much better than the results of the
other two models, i.e. the localization error is less than 0.17 voxels even with
very intense Gaussian noise down to a signal-to-noise ratio of ca. 0.1.

5 Experimental Results: 3D Medical Images

We also applied the new approach to three real 3D tomographic images of the
human head (datasets Woho and C06, see Table 1).



Fig. 2. 3D contour plots of the fitted intensity models for the left and right frontal
horn within an MR image (Woho). The result is shown for two different slices of the
original data. The marked axes indicate the estimated landmark positions.

We considered seven tip-like landmarks, i.e. the frontal, occipital, and tem-
poral horns (left and right) as well as the external occipital protuberance, and
two saddle-like landmarks, i.e. the zygomatic bone (left and right). For these
landmarks in all three images we used as ground truth, positions that were man-
ually determined in agreement with up to four persons. For the CT image, we
did not consider the temporal horns since either the ground truth position was
missing due to very low signal-to-noise ratio (left horn) or it was not possible
to successfully fit the intensity model (right horn). Particularly with this land-
mark the image quality was very bad. In addition, we considered two sphere-like
landmarks in the MR images, i.e. the left and right eye.

Parameter Settings The fitting procedure described above requires the deter-
mination of suitable initial parameter values. The specification of these values
is not a trivial task. Often all values are initialized manually, which is time-
consuming. In case of the ellipsoidal model, we automatically initialize half of the
model parameters. Values for the most important parameters, namely, the trans-
lation parameters (o, Yo, 20) defining the position of the landmark were obtained
by a 3D differential operator. Here we used the operator Op3 = detC, /traceC,,
where C, is the averaged dyadic product of the image gradient ([10]). This
initialization was successfull for model fitting except in two cases, where the
positions of Op3 were relatively far away from the ground truth positions (see
Table 4). In these two cases, we initialized the translation parameters manually.
The smoothing parameter ¢ was always initialized with 1.0 and the deforma-
tion parameters p,, py, 0, and v were all initialized with 0.0, thus, the intensity
model was always initialized as an ellipsoid without deformation. The remaining
parameters and the size of the ROI were initialized manually. For the saddle and
spherical model, all parameters were so far initialized manually.

Results Tables 2, 3, and 4 show the fitting results for the considered landmarks.
In case of the ellipsoidal model, model fitting needed 75 iterations on average.
We have visualized the fitting results of the left and right frontal horn within
an MR image in Figure 2 and of the external occipital protuberance for the C06
image pair in Figure 3 using 3D Slicer ([5]). The average distance between the
estimated landmark positions and the ground truth positions for all 19 tip-like
landmarks computes to € = 1.14mm. In comparison, using the 3D differential



Fig. 3. 3D contour plots of the fitted intensity model for the external occipital protu-
berance within the original image pair C06 (left MR and right CT). Note, the size of
the ROI and the used deformations are different.

Fig. 4. 3D contour plots of the fitted intensity model for the eyes within an MR image
(Woho) and for the left zygomatic bone within an CT image.

operator Op3, we obtain an average distance of epp,z3 = 2.18mm. Thus, the
localization accuracy with our new approach turns out to be much better.

The results for the saddle model are worse in comparison to the ellipsoidal
model. The average distance between the estimated landmark positions and the
ground truth positions for all 6 saddle-like landmarks computes to € = 1.84mm.
In comparison, using the 3D differential operator Op3, we obtain an average
distance of epps = 1.63mm. In addition, it turned out that the saddle model
depends more on the initial parameter values than the other models. The results
for the spherical model are very good. The fitted model describes the image
intensities fairly well and also the model fitting is very robust w.r.t. the initial
parameters. Figure 4 shows the fitting result for both eyes within an MR image.

The execution time of our algorithm is mainly dependent on the size of
the ROI, the chosen variant of the deformation, and the quality of the initial
parameters. As a typical example, the fitting time for the right temporal horn
in the Woho image including tapering and bending deformations and a diameter
of the ROT of 19 voxels is ca. 1s (on a AMD Athlon, 1.7GHz, running Linux).

6 Discussion

The experiments verify the applicability of our new approach, which yields sub-
voxel positions of 3D anatomical landmarks. The intensity models describe the
anatomical structures fairly well as can be seen from the 3D contour plots. Also,
the figures demonstrate that the spectrum of possible shapes of our intensity



Table 2. Fitting results for the ventricular horns and the external occipital protu-
berance (ellipsoidal model), for the zygomatic bone (saddle model), and for the eyes
(spherical model) for the C06 image (MR). The estimated landmark position, intensity
levels, and the distance e to the ground truth position are given. For comparison, the
distance epps of the differential operator Op3 to the ground truth position is listed.
[Co6 (i) [ &l [ & @] a] e con
Left frontal horn 150.65| 79.58| 68.14| 91.6/ 22.3| 1.27mm|| 1.92mm
Right frontal horn 112.34| 76.85| 69.02] 93.9] 18.8| 0.58mm|| 1.72mm
Left occipital horn 143.91| 200.85| 53.01| &84.9| 15.2| 0.15mm|| 3.32mm
Right occipital horn 107.82| 195.98| 56.04| 86.6| 20.0| 0.70mm| 1.72mm
Left temporal horn 164.01| 117.26| 45.38| 82.4| 12.8| 1.20mm|| 1.71mm
Right temporal horn 08.98( 112.23| 40.63| 80.0, 18.8| 0.97mm|| 2.10mm
Ext. occipital protub. || 130.05| 230.94| 32.97| 61.6 8.7| 0.06mm|| 1.21lmm
Mean| 0.70mm|| 1.96mm

Left zygomatic bone || 192.29| 62.81| 34.46| 121.7| 20.8| 1.42mm|| 1.21mm
Right zygomatic bone|| 70.94| 60.95| 31.66| 128.2| 14.9| 0.99mm| 1.48mm
Left eye 167.16| 41.69| 44.42| 90.4| 24.7
Right eye 98.00| 40.68| 43.50| 97.5| 254

Table 3. Same as Table 2 but for the C06 image (CT).
[C06 (CT) 1 I I - e eoms
Left frontal horn 192.80| 93.94| 77.04|1043.5| 996.8| 1.33mm/|| 0.63mm
Right frontal horn 135.31| 90.46| 78.14|1036.7|1001.8| 1.26mm/|| 2.10mm
Left occipital horn 184.07| 260.57| 69.21|1038.5| 989.7| 0.66mm| 0.00mm
Right occipital horn 129.50| 255.77| 72.88(1045.0| 994.0/ 0.94mm| 1.33mm
Ext. occipital protub. | 161.20| 309.43| 48.01{1007.9(2679.0| 1.10mm|| 1.72mm
Mean| 1.06mm|| 1.16mm
Left zygomatic bone || 245.91| 77.37| 49.73| 976.1|2829.0| 1.49mm|| 0.63mm
Right zygomatic bone|| 79.17| 75.24| 50.80| 977.1{2918.0| 1.81mm|| 1.00mm

models is relatively large. An issue for further work is the automatic initializa-
tion of all model parameters, e.g., based on differential properties of the image.
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